Què és la bondat d’adequació?
El test de bondat de l’adequació és una prova d’hipòtesi estadística per comprovar com de bé s’adapten les dades d’exemple d’una distribució d’una població amb una distribució normal. Dit d'una altra manera, aquest test mostra si les dades de les vostres mostres representen les dades que esperaríeu trobar a la població real o si d'alguna manera es trenca. La bona conformitat estableix la discrepància entre els valors observats i els que s’esperaria del model en un cas normal de distribució.
Hi ha diversos mètodes per determinar la bona adequació. Alguns dels mètodes més populars utilitzats en estadístiques inclouen el chi-square, el test Kolmogorov-Smirnov, el test Anderson-Darling i el test Shipiro-Wilk.
Punts clau
- Les proves de bondat d’ajust són proves estadístiques que tenen com a objectiu determinar si un conjunt de valors observats coincideixen amb els previstos pel model aplicable. Hi ha diversos tipus de proves de bonesa d’ajust, però el més habitual és el test de chi-quadrat. les proves poden mostrar-vos si les dades mostrals s’ajusten a un conjunt esperat de dades d’una població amb distribució normal.
Comprensió de la bona adequació
Les proves de bondat d’ajust s’utilitzen sovint en la presa de decisions empresarials. Per calcular una bondat d’ajustament del quadrat quadrat, cal en primer lloc enunciar la hipòtesi nul·la i la hipòtesi alternativa, escollir un nivell de significació (com α = 0, 5) i determinar el valor crític.
El test de bondat més adequat és el test de chi-square, normalment utilitzat per a distribucions discretes. El test de chi-quadrat s’utilitza exclusivament per a les dades col·locades en classes (papereres) i requereix una mida de mostra suficient per produir resultats precisos.
Les proves de bonesa d’ajust s’utilitzen habitualment per provar la normalitat de residus o per determinar si es recol·lecten dues mostres a partir de distribucions idèntiques.
Exemple d’una prova de bondat d’adequació
Per exemple, un petit gimnàs comunitari pot funcionar amb el supòsit que té la màxima assistència els dilluns, dimarts i dissabtes, la mitjana d'assistència els dimecres i els dijous i la més baixa assistència els divendres i diumenges. A partir d’aquests supòsits, el gimnàs utilitza cada dia un nombre de membres del personal per registrar-se, netejar instal·lacions, oferir serveis d’entrenament i impartir classes.
Tanmateix, el gimnàs no té un bon rendiment econòmic i el propietari vol saber si aquestes hipòtesis d’assistència i els nivells de personal són correctes. El propietari decideix comptar el nombre d’assistents al gimnàs cada dia durant sis setmanes. A continuació, pot comparar l'assistència presumida del gimnàs amb la seva observació mitjançant un test de bondat d'ajustament chi-quadrat, per exemple. Amb les noves dades, pot determinar com gestionar millor el gimnàs i millorar la rendibilitat.
